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Abstract. While the information security literature reported great advances in 
Intrusion Detection Systems (IDS) capabilities, it those systems have neglected their 
weaknesses in dealing with events that are detected when some state variable values 
are out of range but declared unknown because they could not find their definitions in the 
IDS databases. A Distributed Incident Response Generator (DIRG) is simply a distributed 
decision support system designed to generate incident responses in a distributed 
computing environment when the existing IDS system suspects an event that does not 
correspond to a known intrusion, residing in its databases. Since the suspected event is 
unknown to the IDS, the security administrator would have a great deal of uncertainty that 
should be feasibly managed to plan the appropriate incident response actions in a timely 
manner. In addition to the uncertainty associated with the suspected event, many data 
and information assets may be remotely located in a large organization, and an intrusion 
may be detected first in one location but not in others. In this case, a distributed stateful 
inspection of critical resources can help identify security incidents early enough to prevent 
further security compromises in the distributed computing environment. Every time the 
security administrator suspects an intrusion based on an IDS message of an unknown 
event, he/she creates several scenarios of possible security incidents that are compatible 
with a multiple-domain security knowledge designed to enforce the security policy of the 
organization. Values of state variables are collected from remote locations through 
distributed stateful inspection activities for the purpose of obtaining enough evidence to 
plan incident responses for the unknown event. The type of data involved in intrusion 
detection when ample uncertainty is present is often not suitable to formal statistical 
models and Bayesian modeling is not appropriate. This article proposes the adoption of 
Dempster and Shafer theory to process the intrusion data for the unknown event. The 
DIRG system engine transforms intrusion data into a belief structure using (1) the possible 
incident scenarios, (2) the consolidated stateful inspection data obtained throughout the 
distributed computing environment, and (3) the feasible security knowledge associated 
with the enforcement of the organization’s security policy. Belief values associated with 
various incident scenarios are then derived and evaluated to choose the most appropriate 
scenario for which an automatic incident response is generated. This article also provides 
a numerical example demonstrating the working of the DIRG system. 

Key words: intrusion detection, incident response, distributed computing, decision 

support system, security risk, stateful inspection. 
 
Introduction 
The literature went many different ways in surveying intrusion detection system 

taxonomies. Each reported taxonomy may serve one investigation purpose but not others 
depending on the objective of the study. In this article, we adopt Lazarevic, et al.’s 
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intrusion taxonomy because it provides information about several features that we need 
in studying unknown intrusions picked by a working IDS system (Lazarevic et al., 2005). 
The IDS system, in this case, has sensors that detect out of range state variables to 
indicate a suspected intrusion without knowing the exact identity of the intrusion being 
executed. Lazarevic, et al. proposed an inclusive taxonomy based on attack type, number 
of network connections involved in the attack, source of the attack, computing 
environment, and automation level (Lazarevic et al., 2005; Sommestad and Hunstad, 
2013). 

Attack types have been organized by most of the literature as DoS, probing attacks, 
compromising attacks, and viruses. Other classifications of attacks will most often lead to 
one of those types (Kendall, 1998). 

In addition to denying the use of resources and services to authorized users, DoS 
attacks aim at diminishing or fully eliminating the availability of computing resources by 
stalling networks, computers, or programs (Marchette, 2001). There are operating 
systems attacks that exploit code bugs and flaws, as well as network attacks that exploit 
vulnerabilities in communication protocols. There are also distributed DoS (DDoS) attacks 
where multiple machines are deployed to eliminate availability of computer resources 
(Mirkovic and Reiher, 2004: 39-54; Peng, 2002). Early detection of DDoS attacks is very 
important so the attacks can be studied, especially the progression of attacking activities, 
so that quick responses can be planned for the purpose of limiting the ongoing effects. 
The probing attacks start by conducting surveillance and scanning to identify feasible 
victims. The scanning is needed to find the IP addresses they can exploit and assemble 
all the information they need about the victims’ operating systems and offered services. 
Once enough vulnerabilities are known, attackers can then plan their attacks to inflict 
harm and discover more vulnerabilities (Ertoz et al., 2004; Jung et al., 2004; Robertson 
et al., 2003; Staniford et al., 2002: 105-136). The compromising attacks can be performed 
by insiders or outsiders. These attacks aim at full penetration of systems to gain privileged 
access to computing resources and compromise their security. Outsiders who are not 
legitimate users of the system can gain access as users, or access the root directory, and 
break into systems. The higher the privilege obtained the more harm is inflicted to the 
victim’s system. 

On the other hand, insiders often have legitimate accounts with given privileges. 
However, they can intentionally misuse their authorized services and elevate their 
privileges by exploiting discovered vulnerabilities in the systems where they are legitimate 
users (Feng et al., 2003). Viruses, with all their categories, consist of programs that 
replicate on computer systems and propagate through networks. They can erase files on 
the hard disk and install malicious programs. Categories of viruses have been defined in 
terms of their environments, their operating systems, the code they use, and their 
destructive power (Feng et al., 2003). The number of network connections involved in an 
attack is also a very important feature of attacks. For example, DoS, probing, and worms 
are known to use multiple network connections. Conversely, buffer overflow attacks 
typically use single network connections. Most compromising attacks are often very 
focused attacks that lead to penetration and, hence, use single network connections 
across a small number of networks. 

The source of attack is also an important indication of the distribution of the attacks. 
Planning responses to attacks is more effective when the origin of the attack is known. 
The environment of the attack is also a mandatory feature we need to know. Planning 
incident responses requires knowledge of the computing environment where the attack 
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is taking place. Wireless attacks will require different preventive and corrective actions 
compared to connected environments. In a connected environment, it is also 
consequential to know the type of environment the attack is taking place, whether the 
attack is hitting a firewall, host machine, an entire network, or a VPN environment, for 
example. 

The automation level will indicate whether we are dealing with a manual attack, an 
automatic process, or both. Manual scanning of systems is not as fast and as propagating 
as automatic scanning and should be handled differently (Staniford et al., 2002: 105-136). 

 
An IDS 

As in NIST (The National Institute of Standards and Technology), we view intrusion 
detection to be the monitoring of a computing environment and its inspection of signs of 
intrusion and attempts to compromise the confidentiality, integrity, and availability of its 
computing resources (Bace and Mell, 2001). 

Intrusions can be performed by either hacker when they access a computing 
environment or by legitimate users who abuse their privileges. An intrusion detection 
system is often made of both software and hardware tools designed to monitor a 
computing environment. Although Dorothy Denning’s work in designing the first intrusion 
detection system (Denning, 1987: 222-232) is dated, intrusion detection systems continue 
to be designed the same way. That is, intrusion detection systems are designed to 1) 
gather data through consolidating signals from sensors plugged around the network, 2) 
detect intrusive activities based on the sensors’ information, 3) sequentially populate 
databases given sensors’ information, and 4) configure tools for defining the current state 
of the system so that effective responses can be planned in a timely manner. 

The literature advanced several features that need to be included in an intrusion 
detection system (Debar et al., 1999; Porras and Valdes, 1998): Prediction Performance, 
Time Performance, and Fault Tolerance. 

Prediction accuracy alone is insufficient for modeling IDS performance. For 
instance, a valid IDS prediction accuracy value may classify network traffic as safe 
because > 98% of the traffic is legitimate data. However, the 98% does not make sense 
due to the < 2% of network traffic considered suspicious. If this performance criterion is 
sound, then most IDS systems will be sound and most transmitted data will be safe since 
IDS accuracy has exceeded 98%. That is, the performance of an IDS system should be 
linked to the quality of its output in terms of its detection rate and false alarms (Tavallaee 
at al., 2010: 516-524; Wang and Liu, 2008). 

An IDS should correctly detect intrusions and those detected intrusions can only be 
real intrusions and not legitimate activities. Two performance measures are critical to 
measure the effectiveness of an IDS system: the detection rate and the false positive 
rate. The detection rate is computed as the number of correctly detected intrusions 
divided by the total number of intrusions. The false alarm rate is computed as the number 
of legitimate activities that are reported as intrusions divided by the total number of 
intrusions (Porras and Valdes, 1998). 

The time performance of an IDS measures the time lapse before an intrusion is 
detected including the processing time and the intrusion transmission time. The shorter 
the time the earlier a security administrator could plan a response (Jamdagni et al., 2013: 
811-824). 

 
The Distributed Incident Response Generator (DIRG) 
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This study assumes a working IDS system that can detect all known intrusions, as 
well as alerting the security administrator to plan the appropriate incident response. 
Occasionally, the working IDS system suspects some events that cannot be classified as 
known intrusions because the adopted security attack is not defined in the system’s 
intrusion knowledge base. In those cases, the IDS system alerts the security 
administrator of the suspected event and triggers the DIRG to provide assistance in 
recognizing the unknown intrusion and to later generate recommendations of the most 
appropriate actions that should be taken. 

As shown in Fig. 1, when the DIRG is triggered as discussed earlier, the security 
administrator has to start the required input preparation for the DIRG: an event recognition 
record, distributed data containing among other things the current values of state 
variables, and the feasible specific security domain relevant to the event in question. 

At this point of the decision process, the event conditions only constitute an initial 
guess by the security administrator on the possible scenario(s) given the IDS report 
describing an unknown event. Information about the initial event conditions is then 
defined by the security administrator and needs to be evaluated using values of state 
variables taken at the organization’s distributed remote locations. Real-time distributed 
processing is essential to prevent the propagation of the suspected event. 

The security knowledge base contains, for each security domain, the relevant 
security knowledge associated with the suspected event conditions, their state variables, 
intrusion properties, and confirmed corrective actions, in addition to all established 
certainty factors, if any. The knowledge availability is assured by the security policy and 
the working IDS system where the DIRG is installed. In general, however, there are a 
variety of knowledge discovery and engineering techniques that can produce security 
knowledge needed for the DIRG system. Classification techniques, such as clustering, 
neural networks, decision trees, nearest neighbors, and pattern recognition are all 
examples of knowledge discovery tools that can be used to create knowledge or to 
enhance the existing knowledge bases. The security knowledge base may also be 
created by training, which uses validated knowledge patterns collected throughout the life 
cycle of the organization’s security management system (Modi et al., 2013: 42-57). 

The DIRG system can also be activated automatically.  This activation, however, 
requires the addition of a module capable of identifying those event conditions associated 
with the information received from the working IDS system and any scenarios assembled 
by the security administrator in the event record. The security administrator can then 
connect to the DIRG system and enter his/her incident scenarios to complete the security 
administrator’s part of the event record. This feature of the system, however, is 
considered beyond the scope of this article and may be studied in a future version of this 
article. 

The proposed DIRG system can be integrated in any computing environment with 
a working IDS system without affecting the operation of existing components. The quality 
of security decision support information generated by the DIRG system will depend on 1) 
the quality of data and knowledge received from remote locations, 2) the quality of the 
IDS system’s information on the unknown intrusion, and 3) the quality of a specific 
knowledge base relevant to the event in question. If the distributed data on state variables 
or the knowledge bases contain errors or if the event record is not well defined, then the 
DIRG will not be aware of those errors and the resulting erroneous information will be 
processed as valid information and the output of the inference engine will certainly be 
affected. Eliminating data inconsistencies in the databases, validating the contents of the 
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knowledge bases, or detecting any other erroneous information in the DIRG input are 
beyond the scope of this article and may be studied in a future research project. 

Most critical distributed information resources have their own security policy that 
defines its acceptable behavior as defined by its owners. Each behavior rule specifies all 
state variables that are indicative of an information resource’s acceptable behavior. Each 
state is defined either as a category or as a number. The categorical values are specified 
to indicate certain acceptable behaviors of the information resources. If the current state 
for one resource does not belong to the set of acceptable states, then there is a problem. 
Hence, this is an undesired event. 

Sometimes the undesired states are categorized as an acceptable state. If the 
current, acceptable state belongs to the set of undesired states then there is a problem; 
that is, we have an undesired event. For example, a promiscuous workstation in a local 
area network is an undesired state. This workstation compromises the confidentiality of 
data exchanged on the network for the rest of the users. The state variables may also be 
specified as ranges between a minimum and a maximum number, such as the bandwidth 
consumption state variable. If a current state variable for an information resource is out 
of range, then there is a problem; hence, this is an undesired event. 

As depicted in Fig. 1, the inference engine process is organized into the following 
steps: 

Step 1: The working IDS system detects an event that does not correspond to a 
known intrusion. This information is stored in the event recognition record. 

Step 2: The security administrator studies the situation and identifies incident 
scenarios that can be responded to. The information of 1) and 2) is stored in the event 
record. 

Step 3: Based on the event record, the security administrator selects all security 
knowledge relevant to the suspected event. This is called the feasible specific domain 
knowledge. 

Step 4: Extract from the distributed remote location the values of the state variables 
and any relevant information needed in the recognition of the suspected event. 

Step 5: The DIRG system now has all needed input ready: event record, remote 
data on state variables, and feasible knowledge relevant to the suspected event 
conditions defined by the security administrator. This input is then submitted to the 
inference engine. 

Step 6: The inference engine processes the input and generates recommendations 
to the security administrator. 

Step 7: The security administrator interprets the system’s recommendations and 
plans the most appropriate incident responses. 

Step 8: The security administrator accepts the DIRG recommendations. This ends 
the planning of an incident response. 
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Fig. 1. Working of the Distributed Incident Response Generator (DIRG) 
 
Let us assume that our system architecture and connectivity are adequately 

configured so our DIRG can be implemented. The DIRG is scalable as we can add as 
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many historical intrusion management databases and feasible security knowledge bases 
as necessary. This architecture is an independent addition and cannot affect any existing 
technology including the IDS databases and knowledge bases. This system requires the 
presence of a security administrator who needs to receive IDS messages of the detected, 
but unknown intrusions in real-time. The security administrator provides all the 
information in the event recognition record, which is later entered into the DIRG to 
generate decision support information. This information is used for defining new 
intrusions and planning an incident response for those new intrusions. 

  
Dempster and Shafer Theory 

Dempster and Shafer theory considers a frame of discernment Ω where all relevant 
objects reside. A measure from 2Ω, to [0 1] is called a basic probability assignment and 
is defined on subsets of Ω, to model the uncertainty associated with the propositions of 
interest. A proposition is simply a subset of the frame of discernment for which a basic 
probability assignment is needed. Mass values m can be assigned to propositions to 
represent the uncertainty associated with them as follows: 

 

m: 2
Ω

 
 → [0 1] 

m(∅) = 0 
∑X⊆U m(X) =1. 

 
The mass m(X) represents the belief exactly committed to X, which is the exact 

evidence that the value of Ω is in X. Most often, whenever we have m(X) > 0, then this 
means that there is real evidence that a value of Ω would be in X. We define X as a focal 
element. 

Then, given all the evidence in hand, made of all the focal elements and their mass 
values, we can compute the total belief provided by available evidence for a proposition 
X, as follows: 

 
Bel(X) = ∑Y⊆X m(Y). 

 
The belief value Bel(X) is the total belief committed to X, that is, the mass of X itself 

plus the mass values attached to all subsets of X. The value Bel(X) is then the total 
positive effect the evidence has on the value of Ω being in A. 

In addition to the belief value Bel(X) there is another quantity Pl(X) called the 
plausibility of X that expresses the remaining uncertainty associated with the negation of 
the proposition X. The plausibility function is defined as follows: 

 

Pl: 2
Ω →[0 1] 

Pl(X) = ∑X∩Y≠∅ m(Y). 

 
The value Pl(X) is the sum of mass of X and mass values of all subsets that intersect 

with X. The plausibility of X measures the extent to which the available evidence fails to 
negate X, and should hence be equal to 1-Bel (Not X). 

 
The inference mechanism 

Before proceeding further in our discussion of the inference engine, we need to 
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define some variables as follows: 
V= ∏j=1,MV  Vj = Structured security domain space; 

Vj = Attribute number j in the security domain space, made of countable objects 

in Dom (Vj), the domain of the attribute; 
F = a subset of V containing the feasible security space where the solutions are 

relevant to the event record; 
e = event compatible with the structure of the security domain space V; 
∆ = Partial order relation on all data sets; 
R(a) = Risk associated with taking the assertion a. 
There are three input types to the inference engine: 1) the event record, 2) the 

distributed data from remote locations, and 3) the feasible security knowledge 
corresponding to the suspected event conditions as defined by the security administrator 
given the detection of an undesired event. Our DIRG system assumes a common format 
made of hyper-tables for the event record, the intrusion management data, and the 
feasible security knowledge bases. 

A table is a set of data arranged in rows and columns. Most often, the rows are 

called tuples and the columns are called attributes. The ith value ti in a tuple corresponds 

to the ith attribute Ai of the table and belongs to the domain Vi of the ith attribute. A tuple t 

is denoted t = (t1, …, tN) where ti ε Vi, I = 1, N.  

While a row in a table is a tuple of singled values of the attributes, a hypertuple is 

instead a tuple of subsets of the attributes. That is, a hypertuple τ is denoted τ = < τ1, …, 

τN> where τi is a subset of Vi, I = 1, N. A hypertable is simply a table of hypertuples and 

hyperdata is simply data made of hypertables. 

Consider then an event record e, e={e
 

1
, …, e

 

Me
} where e

k

 
= (e

k

1
, …, e

k  

Ne
 ), k = {1

 

e

, M} and where {e
k

1
, …, e

k  

Me
 } is a subset of {V1, …, VMv}. Also let ∆ be a partial order 

relation on all the data sets on hand. If x and y are elements of a set E, we say that x ∆ y 

if and only if x ⊆ y. The inclusion defines the amount of support x provides to y, or 
alternatively, the amount of compatibility between x and y. 

Given two subsets E and G and x in G, we define the evidence support SG (x) of x 
in G as the set of y in G such that y ∆ x. That is, SG (x) = {y ε G, such that y ∆ x}. The 
subset G is a posit with respect to the partial order relation ∆ and it may hence have 
elements that are related to x (fully compatible) and others that are not related to x (not 
fully compatible). Only the compatible elements y in G such that y ∆ x are accepted to 
support x. 

 
How to derive an intrusion belief structure? 

As discussed above, there are three input types to the inference engine: 1) the event 
recognition, 2) the distributed data describing state variables from remote locations, and 
3) the feasible security knowledge corresponding to the security domain associated with 
the current suspected event. 

The intrusion belief structure is the ultimate output of the inference mechanism 
because it produces a consolidation of the three types of evidence needed to diagnose 
the suspected event conditions, which is required to plan the appropriate incident 
response. As shown in Fig. 2, the basic probability assignment m(e) attributed to a 

candidate event scenario proposition ei  is computed as the cardinal of the support SD(ei) 

that D gives to ei divided by the support SD(F) that D gives to the feasible security 
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knowledge set F. Since SD(F) is a normalization factor, then this function m(.) from 2F to 
[0 1] is obviously a mass function. Other properties of this function are described in more 
details in Wang and McClean (2008: 455-465) and Xu et al., 2011: 385-399. 

 

 
Fig. 2. Deriving a belief structure for the current intrusion 

 
The security administrator computation process consists of the steps discussed 

above. Those steps are performed in accordance with a structured algorithm that could 
be easily translated into computer code. This algorithm is designed as follows: 

Algorithm: Find the best security administrator’s assertion a* given an event 
recognition record:  

Begin  

1. Consider an event recognition record e = {e
1

 
, …, e

Me

 
} where e

k

 
 = (e

k

1
, …, 

e
k  

Mv
 ), k = {1, Me} and where  

{e
k

1
, …, e

k  

Mv
 }is in V

 

1
x…xV

 

Mv
.  

2. For i=1, Me, do the following:  
a. Compute SG(ei) = |eiΔG|;  
b. Compute SG(F) = |FΔG|;  
c. Compute mG(ei) = |eiΔG| / |FΔG|;  
d. Compute Bel(ei).  
e. Compute e* = argmax[eiεe] Bel(ei)  
f. Compute a* = Projection[Assertions] (e*)  
g. Compute R(a*)  
End. 
We next explain the working of the inference mechanism algorithm which guides 

the security administrator to process available evidence and produce the belief structure 
from which the belief values are induced. At this point, we obtained a belief structure, as 
follows: 

 

m
 

D
: 2V  → [0 1] 

m
 

D
(x) = |SG(x)| / |SG(F)| 
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where SG(F) = {{yεG such that y∆x}, xεF} 

 
Given all the evidence stored in the belief structure just obtained, we can compute 

the total belief provided by the available evidence for a proposition e, as follows: 
 

Bel(e) = ∑Y⊆e  m(Y) 

 
The belief value Bel(e) is the total belief committed to e, that is, the mass of e itself 

plus the mass values attached to all subsets of e. The value Bel(e) is then the total positive 
effect the evidence has on the value of Ω being in e. 

At this point, we have the information we need to evaluate the assertions on event 
conditions identified in the event recognition record by the security administrator. We 
need to compute the belief values of all assertions expressed in the candidate 

propositions {ei, i = 1, Me}. Once the best proposition e* is produced we need to project 

over the assertion attribute to obtain the best security administrator assertion a*. We then 
have the following: 

 
e* = argmax[eiεe] Bel(ei) 

a* = Projection[Assertions] (e*) 
 
The intrusion analysis ends with the security administrator planning an incident 

response according to the DIRG recommendations. 
Finally, as in any decision process under uncertainty, there will be always risk 

associated with the security administration decision process. This risk R(a*) is defined as 
the plausibility of the evidence against the selected assertion; that is, the plausibility of 
the negation of e*. This amount is also equal 1 minus the belief of e*. We then have: 

 
R(a*) = Pl(not a*) = 1 – Bel(e*) 

 
Unfortunately, in practice, the computations above may be very lengthy and 

expensive when the feasible security space F is large. Also, the normalization factor can 
be very costly when F is large. The normalization factor is originally computed as the total 
support of D in F. That is, we have to consider every element in F and count the number 
of elements in D that are compatible with this element in F. This process is too long and 
too expensive. We can show, as in Wang and Liu (2008), Wang and McClean (2008: 455-
465), Xu et al. (2011: 385-399), that we can instead consider the elements in D and count 

the number of elements in F that are compatible with this element in F. This may be 

written as ∑fεF [{dεD such that d∆f}] = ∑dεD [{fεF such that d∆f}]. 
Then, as in Wang and Liu (2008), Wang and McClean (2008: 455-465), we can 

compute the mass values as follows:  
 

SD(e) = ∏i=1, Me 2
|ai|-|ei|

; 

SD(F) = ∑xεF {∏i=1, Me 2
|ai|-|xi|

}; 

mD(e) = | SD(e)| / |SD(F)|. 

 
Numerical example 
Consider a working IDS that generated a signal indicating the presence of an 
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intrusion of unknown type. After the security administrator received the IDS message, 
he/she proceeded by defining the event recognition record where propositions listing 
different scenarios of the intrusion situation have been previously defined. 

Assume that the event recognition record e is made of two propositions: e = {e1, e2}. 
These two scenarios are included in the event recognition record provided in Table 1. 

e = {e1, e2} 
e1 = < {T3, T2}, {a2, a5}, {L, H}, {L, A}, {L}, {L, H}, {L, H}, {1H}, {U}, {L, H}, {HL} > 
e2 = < {T5}, {a1, a2}, {L, A}, {L, A, H}, {A}, {L, H, {MH}, {U}, {L, A}, {HL} > 
 

Table 1. Event Recognition Record 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
{T3, T2} {a2, a5} {L, H} {L, A} {L} {L, H} {1H} {U} {L, H} {HL} 
{T5} {a1, a2} {L, A} {L, A, H} {A} {L, H} {MH} {U} {L, A} {HL} 

 
Assume that the distributed state variable data in remote locations has been 

consolidated and produced the data stored in Table 2. Also assume that the feasible 
knowledge available for this type of event is given in Table 3. Incident responses are the 
actions to take whenever a suspected intrusion is confirmed. The following incident 
responses are considered: 

a1: Structured exception handling using try/catch blocks 
a2: Catch and wrap exceptions 
a3: Implement a global exception handler 
a4: Do not log private data 
a5: Use proven platform-provided cryptography 
a6: Reduce session timeouts 
a7: Secure critical channels 
a8: Constrain, reject, and sanitize input. 
The types of intrusion recognized by the IDS system are listed as follows: 
T1: Elevation of privilege 
T2: Information corruption 
T3: Information disclosure  
T4: Forgery 
T5: Denial of Service (DoS) 
T6: Scripting 

 
Table 2. Historical Intrusion Management Data 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
{T3} {a5} {L} {A} {L} {H} {1H} {U} {H} {HL} 
{T5} {a2} {L} {L, A, H} {A} {L} {MH} {U} {L} {HL} 
{T1} {a1} {L} {H} {H} {L} {1N} {W} {H} {HL} 
{T3} {a5} {L} {L} {L} {H} {1H} {U} {H} {HL} 
{T5} {a5} {A} {H} {A} {H} {1H} {W} {A} {ML} 
{T3} {a6} {A} {H} {A} {A} {MN} {WL} {H} {VHL} 
{T5} {a5} {L} {A} {A} {A} {I} {U} {H} {SL} 
{T1} {a1} {L} {L} {A} {L} {1H} {M} {A} {HL} 

 
Table 3. Feasible Security Knowledge 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
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{T3, T2} {a2, a5} {L, H} {L, A} {L} {L, H} {1H} {U} {L, H} {HL} 

{T5} {a1, a2} {L, A} {A, H} {A} {L, H} {MH} {U} {L, A} {HL} 

{T1, T5} {a3, a7} {L, H} {L, H} {H} {L, H} {1N} {W} {L, H} {HL} 

{T3, T4, 
T6} 

{a2, a4, 
a8} 

{L} {A} {H} {L} {I} {U} {L} {SL} 

{T3, T5} {a5, a7} {A, H} {A, H} {L, H} {A, H} {1H} {W} {A, H} {ML} 

{T5, T6} {a6, a8} {A} {H} {A} {L} {MN} {WL} {A} {VHL} 

{T5, T6} {a2, a6} {L, H} {L, H} {L, A} {L, A} {I, MH} {U} {L, H} {ML, HL} 

{T1, T3} {a1, a5, 
a6} 

{L, A, H} {L, A, H} {L, A} {L, H} {1H} {U,M} {L, A, H} {HL} 

 

Table 4. Computation of the normalization factor | sD (F) | 

Feasible tuples | sD (x), x in F | 

F1 2 

F2 1 

F3 0 

F4 0 

F5 1 

F6 0 

F7 1 

F8 2 

Total: 7 

 
We then obtain the following belief values: 
 

mD(e1) = |SD (e1)| / |SD(F)| = 2/7 = 0.29 
mD(e2) = |SD(e2)| / |SD(F)| = 1/7 = 0.14 

BelD(e1) = .29 
BelD(e2) = .14 

 
Risks associated with the security administrator’s decision are as follows: 
 

R(assertion(e1) = 1- BelD(e1) = .71 

R(assertion(e2) = 1- BelD(e2) = .86 

 
One can then see that the optimal solution for the security administrator is to select 

the following assertion: 
{a1, a5} = {Catch and wrap exceptions, use proven platform-provided cryptography} 

that has the highest belief value. 
 
Managerial implications 

The DIRG system we proposed fits in any computing environment with an IDS 
system to enhance the evidence management process that is needed to assure the 
security of the organization. Without this addition, there will be many incidents that cannot 
be managed based only on the signals generated by the existing IDS system. Due to the 
absence of statistically sound models and the existence of intrusion data that does not 
satisfy the statistical assumptions required by those models, IDS information may be 
erroneously combined. Consequently, inadequate analytical models may be adopted to 
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manage this type of evidence, which will lead to imprecise recommendations. 
We discussed in this article that because of the structure and incompleteness of 

intrusion data a Bayesian model was not possible. Also, any other analytical model will 
be ignoring the feasible security knowledge used by our DIRG system to validate the 
security administrator’s definition of the incident recognition record. The proposed system 
uses every information capability available in the computing environment to generate 
sound incident response decision support for the security administrator. We included 
incident response information from the incident recognition record, historical incident 
management information, and any available feasible security knowledge to validate the 
security administrator’s decisions. 

From the technical side of the proposed system, we proposed a method to collect, 
assemble, and combine evidence before decision support is generated. Event analysis 
can benefit from our proposed method and the intrusion management data combined with 
available relevant security knowledge before producing incident response 
recommendations. We showed how to transform intrusion data into belief structures that 
can be combined and processed. Belief measures may be obtained and the incident 
response assertion that corresponds to the highest belief is the one to be retained. 
Incident response recommendations are designed according to the retained belief values. 

The belief model we presented is not only useful to process decision support in 
intrusion management, but it is also valuable to any other decision situation where there 
is decision support under uncertainty and available data in the computing environment. 
When a Bayesian model cannot be constructed, and only partial information is available, 
the construction of a belief model is consequential. In this case, optimal decisions can be 
made and risks assessed in a statistically sound way. 

 
Conclusion 

While most of the literature reported great advances in IDS capabilities, it has at the 
same time neglected the weakness of IDS systems in dealing with events that are 
detected when some state variable values are out of range but remained unknown 
because they could not find their definitions in IDS databases. That is, even when sensors 
detected those undesired events, the IDS systems still failed to identify the corresponding 
intrusion in its IDS data bases. 

This paper discussed how uncertainty is processed and proposed a distributed 
incident response decision support system that can be added to any IDS environment. 

In designing the proposed DIRG system, this paper proposed a method to construct 
belief structures based on event recognition records and the feasible security space 
associated with the event recognition process. Security administrator’s assertions are 
processed and optimal incident responses are generated in a risk-driven manner. The 
paper also provided a numerical example to demonstrate the working of the proposed 
method. 

There is a great deal of uncertainty in many areas in intrusion detection for which 
the Bayesian formalism is not valid due to the statistical assumptions that cannot be 
verified in available data. Professionals working at the decision support level in security 
management can transform available data into belief structures that can be easily 
combined using Dempster’s rule and processed to provide the decision support they need 
with better accuracy. 

Future research paths can investigate how the proposed DIRG system can benefit 
from adding partial compatibility (instead of full compatibility studied in this article) by 
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stretching the partial order relation used in processing the evidence support mechanism. 
Instead of counting as compatible only those subsets of the historical intrusion 
management data that fully belong to instances of the feasible security knowledge, we 
can study what could happen if we also count those subsets that only intersect (instead 
of one being fully included in the other) with hypertuples in the feasible knowledge base. 
Those intersections, no matter how small they are, hold partial information. The effects 
of that partial information on the incident response recommendations need to be studied. 
This concept of partial compatibility may be useful in cases where IDS messages and 
historical intrusion data are too general to lead to precise incident response 
recommendations or when we are dealing with intrusions that are new to the feasible 
security knowledge base. 

 
References 
Bace R., Mell, P. (2001). NIST Special Publication on Intrusion Detection Systems. 

Computer Security Resource Center. Available at: 
https://csrc.nist.gov/publications/detail/sp/800-31/archive/2001-11-01  

Debar, H., M. Dacier, Wespi, A. (1999). Towards a Taxonomy of Intrusion Detection 
Systems, Computer Networks, 31(8), 805-822. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.4329&rep=rep1&type=pd
f  

Denning, D. (1987). An Intrusion-Detection Model. IEEE Transactions on Software 
Engineering, 13(2), 222-232. http://dx.doi.org/10.1109/TSE.1987.232894  

Ertoz, L., Eilertson, E., Dokas, P., Kumar, V., Long, K. (2004). Detection – Revisited. 
Army High Performance Computing Research Center Technical Report. Available at: 
https://www.researchgate.net/profile/Vipin_Kumar26/publication/265810891_Scan_Dete
ction_-Revisited/links/54acb3810cf23c69a2b8391c.pdf  

Feng, H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W. (2003). Anomaly Detection 
Using Call Stack Information, In Proceedings of the IEEE Symposium Security and 
Privacy, Oakland. Available at: https://dl.acm.org/doi/10.5555/829515.830554  

Jamdagni A., Tan, Zh., He, X., Nanda, P., Liu, R.  (2013). RePIDS: A Multi tier Real-
time Payload-based Intrusion Detection System. Computer Networks, 57(3), 811-824. 
http://dx.doi.org/10.1016/j.comnet.2012.10.002  

Jung, J., Paxson, V., Berger, A., Balakrishnan, H. (2004). Fast Portscan Detection 
Using Sequential Hypothesis Testing. Proceedings of the IEEE Symposium on Security 
and Privacy, Oakland. http://dx.doi.org/10.1109/SECPRI.2004.1301325  

Kendall, K. (1998). A Database of Computer Attacks for the Evaluation of Intrusion 
Detection Systems, Massachusetts Institute of Technology Master's Thesis.  

Lazarevic, A., Kumar, V., Srivastava, J. (2005). Intrusion Detection: A Survey. In: 
Kumar V., Srivastava J., Lazarevic A. (Eds.). Managing Cyber Threats. Massive 
Computing, Vol. 5. Boston: Springer. Available at: 
https://pdfs.semanticscholar.org/e241/3f14a014603253815398e56c7fee0ba01a3d.p
df  

Marchette, D. (2001). Computer Intrusion Detection and Network Monitoring, A 
Statistical Viewpoint. New York: Springer. 

Mirkovic, J., Reiher, P. (2004). A Taxonomy of DDoS Attacks and Defense 
Mechanisms. ACM Computer Communication Review, 34(2), 39-54. Available at: 
https://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/DDoSmirkovic.pdf  

https://csrc.nist.gov/publications/detail/sp/800-31/archive/2001-11-01
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.4329&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.4329&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TSE.1987.232894
https://www.researchgate.net/profile/Vipin_Kumar26/publication/265810891_Scan_Detection_-Revisited/links/54acb3810cf23c69a2b8391c.pdf
https://www.researchgate.net/profile/Vipin_Kumar26/publication/265810891_Scan_Detection_-Revisited/links/54acb3810cf23c69a2b8391c.pdf
https://dl.acm.org/doi/10.5555/829515.830554
http://www.sciencedirect.com/science/article/pii/S1389128612003544
http://www.sciencedirect.com/science/journal/13891286
http://www.sciencedirect.com/science/journal/13891286
http://dx.doi.org/10.1016/j.comnet.2012.10.002
http://dx.doi.org/10.1109/SECPRI.2004.1301325
https://pdfs.semanticscholar.org/e241/3f14a014603253815398e56c7fee0ba01a3d.pdf
https://pdfs.semanticscholar.org/e241/3f14a014603253815398e56c7fee0ba01a3d.pdf
https://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/DDoSmirkovic.pdf


 International Scientific Survey Journal 

 

INTERNATIONAL SCIENTIFIC SURVEY JOURNAL 15 

 
 

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M. (2013). A 
survey of intrusion detection techniques in Cloud, Journal of Network and Computer 
Applications, 36(1), 42-57. https://doi.org/10.1016/j.jnca.2012.05.003  

Peng, T. (2002). Defending Against Distributed Denial of Service Attack Using 
Selective Pushback. Proceedings of the Ninth IEEE International Conference on 
Telecommunications (ICT 2002), Beijing, China. 

Porras, P.A., Valdes, A. (1998). Live Traffic Analysis of TCP/IP Gateways. 
Proceedings of the ISOC Symposium on Network and Distributed System Security 
(NDSS'98), San Diego. Available at: http://www.csl.sri.com/projects/emerald/live-
traffic.html  

Provost, F., T. Fawcett. (2001). Robust Classification for Imprecise Environments, 
Machine Learning, 42(3), 203-231. http://dx.doi.org/10.1023/A:1007601015854  

Robertson, S., Siegel, E., Miller, M., Stolfo, S. (2003). Surveillance Detection in High 
Bandwidth Environments, In Proceedings of the 3rd DARPA Information Survivability 
Conference and Exposition (DISCEX 2003), Washington DC. 
http://dx.doi.org/10.1109/DISCEX.2003.1194879  

Sommestad, T., Hunstad, A. (2013). Intrusion detection and the role of the system 
administrator. Information Management & Computer Security, 21(1), 30-40. 
http://dx.doi.org/10.1108/09685221311314400  

Staniford, S. Hoagland, J.A., McAlerney, J.M. (2002). Practical Automated Detection 
of Stealthy Portscans, Journal of Computer Security, 10(1-2), 105-136. Available at: 
http://hoagland.org/papers/Practical%20automated%20detection%20of%20stealthy%20
portscans.pdf  

Tavallaee, M., Stakhanova, N., Ghorbani, A. (2010). Toward Credible Evaluation of 
Anomaly-Based Intrusion-Detection Method. IEEE Transactions on Systems, Man, and 
Cybernetics: Part C, 40(5), 516-524. http://dx.doi.org/10.1109/TSMCC.2010.2048428  

Wang, H., Liu, J. (2008). Combining evidence in multivariate data spaces. 
Proceedings of the 8th International FLINS Conference on Computational Intelligence in 
Decision and Control, 11-16, Madrid, Spain. 

Wang, W., McClean, S. (2008). Deriving evidence theoretical functions in 
multivariate data space. IEEE Transactions on Systems, Man, and Cybernetics, 38(2), 
455-465. http://dx.doi.org/10.1109/TSMCB.2007.913593  

Xu, E., Wermus, M., Bauman, D.B. (2011). Development of an integrated medical 
supply information system, Enterprise Information Systems, 5(3), 385-399. 
http://dx.doi.org/10.1080/17517575.2011.566630  

http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/journal/10848045/36/1
https://doi.org/10.1016/j.jnca.2012.05.003
http://www.csl.sri.com/projects/emerald/live-traffic.html
http://www.csl.sri.com/projects/emerald/live-traffic.html
http://dx.doi.org/10.1023/A:1007601015854
http://dx.doi.org/10.1109/DISCEX.2003.1194879
http://dx.doi.org/10.1108/09685221311314400
http://hoagland.org/papers/Practical%20automated%20detection%20of%20stealthy%20portscans.pdf
http://hoagland.org/papers/Practical%20automated%20detection%20of%20stealthy%20portscans.pdf
http://dx.doi.org/10.1109/TSMCC.2010.2048428
http://dx.doi.org/10.1109/TSMCB.2007.913593
http://dx.doi.org/10.1080/17517575.2011.566630

	The inference mechanism
	How to derive an intrusion belief structure?
	Numerical example

