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Abstract. Scarcity of in-situ observations over an expanse of 881,913 km2 

(including northern sides of high altitude regions) of Pakistan invites generation of gridded 
datasets at World Meteorological Organization’s (WMO’s) recommended spatial 
resolutions. Normally used for forecasts, projections and impacts assessments, gauge-
based gridded datasets over particular regions have deficiencies either in spatial expanse 
of incorporated in-situ data or in robustness of long-term temporal scales over particular 
regions. This work has addressed these issues by incorporating quality controlled and 
strategically adopted 31 stations daily temperature and daily precipitation data in to an 
algorithm of designing a Cressman Interpolated High-resolution Gauge-based Gridded 
Observations (CIHGGO) at 0.45° (49.95 Km approximately) over a temporal scale of 39 
years (1980-2018) for Pakistan region. The CIHGGO is available in NetCDF compression 
format for ease of use in decision support systems, research and applications. 
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Introduction 

Development of streamline programming languages and state-of-the-art computing 
facilities have provided an opportunity for climate scientists to estimate climatic variables 
and develop reliable data over long periods of time, mainly for areas where data is 
scarcely available. These datasets are generally categorized into reanalyses, satellite 
products, gauge-based observations, and sometimes their compendiums. Gauge-based 
gridded temperature and precipitation datasets are regularly utilized by the climate 
scientists due to their availability over longer spatial and temporal scale (see e.g., Eum 
et al. (2014: 4250-4271) and Yin et al. (2015: 2809-2827). Several gauge-based gridded 
temperature and precipitation datasets have been developed in the last decade where 
improvement in emulation of real climate have remained a challenge (see e.g., Herrera 
et al., (2012: 74-85) and Herrera et al., (2016: 900-908). 

In pursuit of constructing a gridded climate dataset CRU TS3.10, monthly 
observations at meteorological stations across the world's land areas have been 
interpolated on a 0.5° latitude/longitude grid cells covering the global land surface (Harris 
et al., 2014: 623-642). Another database known as Global Historical Climatology Network 
(GHCN)-Daily described by Menne et al. (2012: 897-910) has been designed to fulfil need 
for daily climate data over global land areas. On comparable resolution, still another 
gauge-based analysis of daily precipitation has been constructed on a 0.5° latitude–
longitude grid over East Asia (5°–60°N, 65°–155°E) for a 26-yr period from 1978 to 2003 
using gauge observations as collected from several individual sources (Xie et al., 2007: 
607-626).  

As seen in already cited research, gridded products have been mostly developed at 
regional and global scales. The regional products were developed for specific regions or 
countries, for example, a gauge-based gridded climatic dataset was developed by 
Yatagai et al. (2009: 137-140) for Asia and was used by several (see e.g., Ahmad et al., 
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(2015) over high altitude regions of Pakistan. However, attributed to scarcity of gauging 
instruments and to the long term historical records country-scale gridded observations 
are still rare. The current study has, therefore, addressed such gaps by generating state-
of-the-art Cressman Interpolated High-resolution Gauge-based Gridded Observations 
(CIHGGO) at country-scale for ease of use in formulation of forecasts and performing 
impacts assessments. 

 
Study area and general climatology 

Pakistan lies between 20-40°N and 60-80°E on western side of South Asia (Fig. 1). 
In much of Pakistan, the climate is tropical or subtropical, semi-arid or desert, but in the 
north the area is mountainous which is quite snowy and frigid on peaks of Himalayas. In 
the cold half of the year, from late autumn to early spring, the north is reached by weather 
fronts of Mediterranean origin, which cause rainfall in lowlands and snowfall over the 
mountains. In spring (i.e. March and April), the clash between air masses can cause 
thunderstorms and strong winds. In summer, from July to mid-September, the country is 
reached by an offshoot of the Indian monsoon, yet in most of the country it is not able to 
bring heavy rains, while it doesn't arrive at all in the western part. However, the warmest 
months are those that precede the monsoon, especially June, which is very hot in plains 
and hills, and up to quite high altitudes. 

 

 
Fig. 1. Coordinate location of Pakistan with overlaid topography (m) 

 
In the mountainous areas of the north and west, the climate is continental, with a 

wide temperature range between winter and summer, and often also between night and 
day. The temperature naturally decreases with altitude. The northern area, as well as 
being the coldest at equal altitude, is more prone to cold fronts brought by the westerly 
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winds of the middle latitudes from December to May. But not all areas receive a lot of 
precipitation: it depends on slope exposure. The southern side (the mountains north of 
Peshawar and Islamabad) is much rainier than the northern one. 

The monsoon has an irregular pattern; during some years, it may have an unusual 
force, generating floods, while in other years, it doesn't even arrive. Rivers may overflow 
even at a great distance from the area where the heaviest rainfall occurred, which typically 
happen in the north. So, the great valley of the Indus and its tributaries may also be 
affected by widespread flooding in the southern area, where normally it doesn't rain much. 
The cycle called ENSO can affect the monsoon's performance; in La Niña years, rainfall 
is heavier than normal, while El Niño brings drought. 
 

Methodology 

Selection of ground stations 
For 31 ground stations listed in Table 1, acquisition of daily maximum temperature, 

daily minimum temperature and total precipitation from Pakistan Meteorological 
Department was done. The ground station selection included general siting (urban, rural, 
snow–cover, agro–climate, latitudinal location, proximity to ocean, reach of monsoon and 
westerly systems etc.), and topographic settings since these factors attributed high 
variability in both the temperature and the precipitation values. Since snow cover can 
have a major impact on temperature change (especially by its freeze and thaw process) 
in its vicinity, therefore special attention was paid over to select stations located in those 
snow cover areas. Keeping in view these dynamics, the ground station density in higher 
latitudes above 31°N (below 31°N) was 16(15). Zonally, 3 ground stations were selected 
in the snow–covered regions of Gilgit-Baltistan, 2 ground stations in the hills of Azad 
Kashmir, 6 ground stations in hills and plains of Khyber Pakhtunkhwa, 7 ground stations 
in the plains of Punjab, 5 ground stations in deserts and ocean bordering plains of Sindh, 
and 8 ground stations in barren hills and coastal line of Balochistan. 

 
Table 1. Attributes of ground stations selected for generation of CIHGGO over 

Pakistan 

Sr. No. Station LON LAT Climate Characteristic Province 

1 Badin 68.54 24.38 desert/coastal Sindh 

2 Bahawalnagar 73.15 29.57 hot desert Punjab 

3 Barkhan 69.43 29.53 semi arid Balochistan 

4 Cherat 71.53 33.49 hill station Khyber 
Pakhtunkhwa 

5 Chhor 69.47 25.31 hot desert Sindh 

6 Dalbandin 64.24 28.53 hot desert Balochistan 

7 D.I.Khan 70.55 31.49 hot desert Khyber 
Pakhtunkhwa 

8 Dir 71.51 35.12 humid subtropical Khyber 
Pakhtunkhwa 

9 Gilgit 74.20 35.55 cold desert Gilgit-Baltistan 

10 Gupis 73.24 36.10 subarctic Gilgit-Baltistan 

11 Islamabad 73.05 33.42 humid subtropical Punjab 

12 Jiwani 61.48 25.04 hot desert Balochistan 

13 Karachi 67.08 24.54 arid/coastal Sindh 
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14 Khanpur 70.41 28.39 hot desert Khyber 
Pakhtunkhwa 

15 Khuzdar 66.38 27.50 arid Balochistan 

16 Kotli 73.54 33.31 monsoon-influenced 
humid subtropical 

Azad Kashmir 

17 Lahore 74.24 31.31 semi arid Punjab 

18 Mianwali 71.33 32.33 hot desert Punjab 

19 Multan 71.26 30.12 arid Punjab 

20 Muzaffarabad 73.29 34.22 humid subtropical Azad Kashmir 

21 Nawabshah 68.22 26.15 hot desert Sindh 

22 Nokkundi 62.45 28.49 hot desert Balochistan 

23 Panjgur 64.06 26.58 hot desert Balochistan 

24 Parachinar 70.05 33.52 humid subtropical Khyber 
Pakhtunkhwa 

25 Peshawar 71.35 34.01 hot semi arid Khyber 
Pakhtunkhwa 

26 Quetta 66.53 30.15 cold semi arid Balochistan 

27 Rohri 68.54 27.42 hot desert Sindh 

28 Sargodha 72.40 32.03 hot semi arid Punjab 

29 Sailkot 74.32 32.30 monsoon-influenced 
humid subtropical 

Punjab 

30 Skardu 75.41 35.18 cold semi arid Gilgit-Baltistan 

31 Zhob 69.28 31.21 semi arid Balochistan 

 
Quality control 
After identification of the weather stations that best represented diverse climatic 

regions, acquisition of data for 1980-2018 historical period (daily precipitation, maximum 
and minimum temperatures) was done. The raw data was then put to quality control which 
identified outlying (+/- 3 standard deviations) and questionable entries that might be 
corrupted. Spatial and temporal inspection was carried out on the dataset elements to 
see if anything looked amiss. The data was further checked to see if it were plausible 
physically, temporally (e.g., questionable value supported by preceding or following 
values), or spatially (e.g., questionable value supported by neighbouring stations). 

Spatial aggregation 
In final step the observations are spatially aggregated with optimal coverage at 

0.45°×0.45° over a 39-year temporal scale using Cressman (1959: 367-374) interpolation 
method (see, e.g., Goodin et al., 1979). Firstly, the algorithm bins station observations 
into grid cells based on their location. If more than one station is located within a grid box, 
the observations are averaged together to produce analysed value. Secondly the method 
interpolates site data to a user-demarcated latitude-longitude grid. Several passes are 
made through the grid at successively tighter radii of influence to upsurge precision. The 
radius of influence is the maximum radius from a grid point to a site by which observation 
can be weighted to assess the computation at the grid. Sites outside the radius of 
influence have no relevance on a grid point assessment. For every iteration, a different 
result is computed for each grid site established on its adjustment factor. This adjustment 
factor is resolved by evaluating each site within the radius of influence. For each such 
location, an anomaly is described as the tiff between the site assessment and an 
assessment attained by interpolation from the grid to that site. A distance-weighted 
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method as in equation (1) and in equation (2) is later used in all such anomalies contained 
by the radius of influence of the grid to reach at an adjustment for that grid. The 
adjustment factors are imposed over all grids before the subsequent iteration is executed. 
Observations with highest proximity to the grid hold chief weights. As the proximity 
reduces, the observations bear recessed weight. 

 

𝑧 =
𝑆2−𝑠2

𝑆2+𝑠2  𝑓𝑜𝑟 𝑠2 ≤ 𝑆2                                     (1) 

𝑧 = 0 𝑓𝑜𝑟 𝑠2 > 𝑆2                                                  (2) 

Here 𝑆 is influence radius, 𝑠 is distance between the site and the grid and 𝑧 is the 
weighting function. 

 

Fig. 2. Flow chart of CIHGGO algorithm designed for this study 

Results 
Post processed output of the CIHGGO from 31 stations (Fig. 2), replicating some 

extreme events over the historical data length is shown in Fig. 3. The Cressman objective 
analysis performed on the station data to arrive at a gridded result has presented robust 
results. The deployed technique has intricately interpolated station data to the defined 
latitude-longitude grid. Multiple passes made through the grid has increasingly rendered 
smaller radii of influence (10, 7, 6, 2 and 1 in our case). At each pass, a new value is 
depicted for each grid point based on the calculated correction factor that is determined 
by looking at each station within the radius of influence. 

For each such station, an error is found as the difference between the station value 
and a value arrived by interpolation from the grid to that station. The correction factor is 
seen to balance distance weights applied to all such errors within the radius of influence. 
The correction factors are further seen to satisfactorily correct each grid point before the 
next pass is made. All the grid boxes that did not have stations within the third specified 
radius are set to the missing data value. The actual values of the gridded expression have 
been ignored in processing the data since the grids themselves act as templates to 
perform the analysis. Scaling of the grid is linear in latitude-longitude axes. 

The CIHGGO algorithm was time-efficient, which mostly depended on our modestly 
chosen grid resolution and station data densities. The CIHGGO algorithm becomes highly 
unstable if the grid density is substantially higher than the station data density (i.e, far 
more grid points than station data points). In such cases, the analysis can produce 
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extrema in the grid values that are not realistic. It is thus suggested to examine the results 
and compare them to the station data to insure they meet satisfactory standards. One 
such comparison is performed by Ahmad and Mahmood (2017: 1) where an interpolated 
data over Pakistan is seen in analogy with a previously published data by Chaudhry et al. 
(2009: 367-374) over the same region. 

 

 

Fig. 3. Post processed results of CIHGGO emulating some extreme events of the 
past 

 
Conclusion 
Global temperature datasets have different spatio-temporal resolutions and 

durations. Quality of gridded datasets is governed by the data assimilation system, its 
optimization and the quality of observation data used. Differences/biases in stations can 
introduce specious variability and trends into gauge-based gridded datasets. 
Furthermore, there are uncertainties associated with gridded datasets, because of large 
natural, spatial and temporal variability, lack of observation data over large areas, 
changes in station networks, rain gauge types, and observational practices. Therefore, 
reliability of gauge-based gridded temperature data varies with time and regional climate. 
Gridding and interpolation of in-situ datasets using CIHGGO algorithm has established 
robust results. The correction factors are seen to satisfactorily correct each grid point of 
the constructed data. The CIHGGO is therefore recommended for use in applications 
considering all uncertainties mentioned in this study. 
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