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Abstract. In this paper, we consider the self-dual cyclic codes over the matrix ring
M, (F, +uF,) that is isomorphic to fa Tl tVE +uwvE, yhere u”=0 and v =0 we

discuss the Gray map of the ring M., (F, +uF,)

Fi are constructed.
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. By the Gray map, some self-dual codes
over

Introduction

Self-dual cyclic codes (Mathematics Subject Classification, 2000: 94B15) form an
important class of linear codes due to their significance in coding theory and decoding
theory. Recently, there are some papers on cyclic codes over rings, these codes caught
the attention of researchers. A. Hammons et al. (1994; 301-319) studied some results on

Z, codes, and they have shown a relationship between non-linear binary codes and Z,-

linear codes. Linear codes over the 42 ~ matrix ring have been studied in the survey of
F. Oggier et al. (2012: 734-746). The advantage of matrix rings is that they are non-
commutative. On structures of cyclic codes and their dual codes over non-commutative
finite rings forms an important and new topic in coding theory in the works of modern
scientists within the field (Luo and Parampalli, 2018: 1109-1117; Bhowmick et al., 2018;
Alahmadi et al., 2013: 2837-2847; Pal et al., 2019). R. Luo and U. Parampalli (2018:

1109-1117) studied cyclic codes over Mz(Fz +”F2). Some optimal cyclic codes over F,
were obtained. S. Bhowmick, S. Bagchi, R.K. Bandi (2018) studied the structures of the

ring Mz(Z4)and then focused on algebraic structures of cyclic codes and self-dual cyclic
codes oveer(Z4). A. Alahmadi, H. Sboui, P. Sol’'e, O. Yemen (2013) characterized
cyclic codes and self-dual cyclic codes over the matrix ring Mz(Fz). J. Pal, S. Bhowmick,

B. Satya (2019) studied some results on cyclic codes over Mz(Fz).
Motivated by R. Luo and U. Parampalli (2018: 1109-1117) and Bhowmick et al.,

(2018), in this paper, we study self-dual cyclic codes over the matrix ring Mz(Fz +”F2).

The rest of this paper is organized as follows. In section 2, we review some results on the

matrix ring, give a Gray map from this ring to’+. In section 3, we study the dual codes of

M, (F, +uF,)

cyclic codes over . A necessary and sufficient condition for cyclic codes to

be self-dual is given. As an application, some self-dual codes over Fy

Gray map.

are obtained by the

Cyclic codes over Mz (Fz2+uFz2)
Gray map
In this paper, we denote the ring Mz(F2+uF2) by R where u’=0 Ris a non-

commutative ring of matrices of order 2 over the ring Fy+ufF;
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Lemma 1. Let M2 (Fz +”F2) be a non-commutative ring of matrices of order 2 over

the ring F, +”F2, and Mz(Fz)be a non-commutative ring of matrices of order 2 over the
finite field > Then Ma(F +uf,)=M,(F,)+uM,(F,)
a+ua  b+ub'
c+uc’ d+ud'

GMz(Fz "‘”Fz)
Proof. Let a,a'.b,b',c,c’,d,d' e F,

Then 4 can be written as
a b a b

A= +u =B+ub’
c d ¢ d

a b a b
dJEMz(Fz) B':(c; d:]EMz(Fz)

B :(
Where ¢

.where

, , which implies that
B+uB' e M,(F,)+uM,(F,) Hence, 4 € My (F)+uM,(F,). Thus,
Mz(Fz+”F2)§M2(Fz)+uMz(Fz)_
a b a b
B:{ J B’—[ , ,JeMz(Fz)
Inversely, let c d) ¢ d . Then

a+ua’ b+ub

B+uB’=[ JEMZ(F2+UF2)

ctuc' d+ud
which implies that M, (F, +uFy) 2 My(F, )+ ub,(F,) Thus,
Mz(Fz+uF2)=M2(Fz)+”M2(F2)_

M, (F,)
F,)

From the survey of C. Bachoc (1997: 92-119) we know that codes over

F,+vE,

in the following way. Let us call 7 an element of M, (F,) of

characteristic polynomial X +x+1 where
(0 1)y, (01
= o
L 2. ~
are elements of order 2 in R satisfying the relationship " =1 * . Then Fz[”]=F4 and

M,(F,)=Fnl+if[n] Setting ¥=1+1 and identifying the subring Blnl with i then
Mz(Fz):F:l+VF:1_

reduce to codes over

From Lemma 1, we can see that R=F, +ul, +vF, +uvF, ,

2 2
Where #° =V =0 gnd uv=vu

We define a Gray map from R to
©:R—>F,

4
F as follows

a+ub+ve+uvd [] (d,c+d,b+d,a+b+c+d)

a,b,c.d € Fy One can verify that the map ? is a bijection. This map can be

F}

where

extended to R".The Hamming weight "W# of ¥ €4 is defined as the number of non-zero
coordinates of X. For X=a+ub+vc+uvd € R" e define the Lee weight of X, denoted
by WL(x), as

wL(x):wH(d)+wH(c+a’)+wH(b+d)+wH(a+b+c+d)
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Forany ©Y€R" the Lee distance d,(x.y) petween * and ¥ is the Lee weight of
X~V thatis dL('XDy)ZWL(xby)_

Definition 1. A linear code C of length 7 over R is a left R —submodule of R".

The linear code Cis free if C has a left R —basis. The Lee distance of Cis denoted
by dL(C)and is defined by

dL(C):min{wL ZWL |c (co,c,, ,cn,)eC}

By the definition of the Gray map, we have the foIIowing lemma directly.
Lemma 2. If C is a linear code over R of length ” with size M and minimum Lee
M
distance dL, then ‘P(C) is a linear code of length 47 with dimension log;" and minimum

Hamming distance d.
The following lemma shows that the Gray map preserves the self-duality.

Lemma 3. If C is a linear self-dual code over R of length 7, then o(C) is a linear
self-dual code over 7% of length 47
Proof. Let C be a linear self-dual code. Then, for any % € C, we have
x-y=(a+ub+vc+uvd)-(a’ +ub' +vc' +uvd')= aa’ +uab’ +vac' +uvad' +uba' +uvbc'
+vea' +uveb' +uvda' = aa’ +u(ab’+ba')+ v(ac' +ca')+uv(ad' +bc' +cb' +da')=0
which implies that @@’ =0 ab’'+ba'=0 ac'+ca’=0 ad'+bc'+cb'+da’ =0
Therefore,q’(x) o(y ) (d,c+d, b+d a+b+c+d) (d',c'+d"\b'+d',a +b'+c +d')=
dd' +(c+d)c'+d')+(b+d )b +d')+(a+b+c+d)a' +b +c' +d')=aa +(ab'+ba')
+(ac'+ca’)+(ad' +bc’ +cb' +da')+4dd’ + 2cc’ + cd’'+dc+bb' +bd' +db') =0

1 _ L 1|
That is @(C) is a self-orthogonal code. Since |C|=|¢(C] ,‘C |_‘§D(C) ,|C |_|C‘, it

=lo(C)
follows that |q0( ‘qo( ) ‘ Hence,‘?"(C) is a linear self-dual code.
Cyclic codes over My(F2+UF2)

Definition 2. Let € be a linear code over R of length . If for any codeword
(co:€ire,1)€C , (¢.1€0:€15€,2) s still a code word in C then C is said to be a cyclic
code of length " over R,

R[x]

In this section, we use to represent the polynomial ring over R .Since x"—1js

: . . R|x|/ R -1
commutative, then we can make a quotient ring [x] < > Clearly, [x] <x > is a
left module over R . Define a map
n:R"— R[x]/(x" —1>
c= (co,cl,...,cn_l) i c(x)= Cy+ex+ete, X"
Clearly,7is a left R—module isomorphism. The cyclic shift of a code word

e =(€0:€i5611) i (€5€05€1556,2) if ang only if ”'”(C)E”(C), thatis C is a cyclic code

R[x]/(x” -

: : , . : . . R|x|/(x" -1
identify the cyclic code with the left ideal of the quotient ring [ <x >
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Lemma 4. A linear code € of length # over R is cyclic if and only if Ci and € are

cyclic codes of length 7 over £+ +VFs |

Proof. By the isomorphism of R, we have that ¢=G +C2, where €-C2 are linear

Fy+vE, | ot ¢ tuc, €C ¢ € Cl’ c,eC, .LetCl =(C(l],611,.--30,11_1)

codes over , Where
and C2=(C§,Cf,-~,f,f_1)_ Then X-7le +uc,)=xn(c,)+ux-m(c,)eC Therefor,

77l )€€y gng 7o 7ley)€C, which implies that €1 and €2 are cyclic codes.

On the other hand, if ¢ and €2 are cyclic codes, then for any ¢ +#¢: €€

c eC, c,eC, fr-rc(cl)eC] ﬂ'-TL’(Cz)ECz

, where

we have that and

x-m(e, +ue,)=x-n(e,)+ux-nle,)e C Therefore C is a cyclic code.
Suppose that 77 is an odd positive integer in this paper. Define a map

NZR[X]_)E;[X]

Z afxf U Z .u(aj)xi

where #(@) genotes reduction of modulo # and V.
it 4(/) is irreducible over Fi| then the polynomial /<Rl is called a basic
irreducible polynomial. The polynomial x" =1 factorizes uniquely into pairwise coprime

ireducible polynomials overfs. Let® “I=Sht I where Ji are irreducible
polynomials over Fy,

Lemma 5. Let Ji#zx'-1 be a basic irreducible polynomial over R . Then R[x]/<ﬁ>
is not a ring but a left module over R .

Proof. Since <f> is not two sided ideal of R[x], then R[x]’,(f"> is notaring. Itis only
a left R—module.

By Lemma 5, we have the non-commutative analogy of the module's Chinese
Remainder Theorem.

Lemma 6. Let n be an odd positive integer (Bhowmick et al., 2018). Then

R/ (v 1) = ORI (1)

polynomials over R .

n m v
x'=1= . ' .. .
where Hrﬂﬁ and ffs are basic irreducible

Lemma7.1f / is anirreducible polynomial over £ (Luo and Parampalli, 2018: 1109-
1117), then the left R —submodules of RM/U) are<O> ,<1>’<u>’<v>’<uv>’<u>+<v>’<u+Vh“>,

where h, is an unit in F4[x]f’<f)_

Let # be afactorof X —1in F,[x]

. From Lemmas 6 and 7, we have the follow result.
Lemma 8. Let * ~1=ALSs L Where Ji's are monic basic irreducible (Luo and
~oox" =1

Parampalli, 2018: 1109-1117) pairwise coprime polynomials in R[x]. Let f; . Then
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any ideal in Al is the sum of the left R —submodules < ,
<f e _1>> <uvf o _1>> < (wroi,) f+ (v _1>>’<((u>+<v>)j; ol _1>>

b, is an unit in F [x]/< )
Theorem 1. Let C be a cyclic code of odd length 7 over R .Then there exists a

family of pairwise monic polynomials Fo- F1>F2: 5. Fu 15, F € F[x]
x"—1=F,FF,F,F,F,F,

, where

such that

6and
C=<}?]>@<u}?’2>®<v;£'3>®<uvﬁ4>®<(u+vha)ﬁg>®<<u%’6>+<v}?;>>
n_ _ B
where h, is an unit in E‘[x]/<x 1>. Furthermore,|c|_a , Where

B =4degF +2degF, +2deg F, +deg F, + 2deg F; +3deg F;

Proof. Let ¥ ~1=/i/afs"/i pe a factorization of *"~1 into a product of monic
basic irreducible pairwise coprime polynomials. By Lemma 8, C is a sum of ideals of the

form<jg.+<x»=_1>>’<ufz.+(xn_1>>’<vﬁ+<x~_1)>’<uv}i+<xn_1>>’
<(u o) £+ -1>> ’<((u>+(v>) firlw -1>> |

necessary, we can assume that

c=Funjoolfn)

o Josler)
oo

oo ool

@<u+vh kl+k2+k3+kd+w>®---@<(u+vha)}kl+k2+k3+k4+ks+ké>

where 1=i=m_ After reordering if

where ko ky ks ky kg kg =0 and k1+k2+k3+k4+k5+k6+15m. Let ky=0 and
ki-kyi ks e nonnegative integers such that %i 2 ks + Ky + ks ko ky =m.
Define
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F, = fk[,+1 "'f:'cu+k1 B = fko+k,+1 "'fkn+k1+k2 )

F, = fk0+k|+k2+] ” 'fk0+k| +hythy I = f.'c0+---+k3+1 "'f;‘c0+---+k_, )
F,= fku+---+k4+l "'fku+---+k5 = .f:k0+---+k5+l "'f}c0+-~~+k6 s
F= fk0+--~+k6+] fm

Then, by the construction, it is clear that
x"—1=FFF,F,F,FF,
And

C= <}A7]>®<u é)@ <vé>®<uvé>@<(u +vha)é>@<<u%;>+<v%;>>
Now, we compute the size |C‘ . We know that
C= <}?]>@<u 1‘?’2>EB <vﬁ'3>®<uvﬁ4>®<(u +vha)1£‘5>®<<u/\6>+<v/\6>>
, which implies

e e e R SR

The rest follows from the fact that
oo
<uvﬁ;> =48l <(u +vh, )1&\’5> <<u}7’6> + <v;’\76>>‘ = 4748l

Theorem 2. Let € be a cyclic code of odd length 7 over R with

c-epeolalelmaoleriol {5,

C=@)

Fo BB gre pairwise coprime,

C=
that

=)}

_ A2degh,
— f2deely

_ A2degFs
= 434l

unit in Iﬂ[x]/(x" _1>.Let C =F+uF,+vF+uvF,+(u+vh, )F,+uF,+VF, Then
Proof. For any two distinct integers and j, 0<i,j<6 , we have that(x _l)lﬁFf .
FF =0

N

Ty

.Further, for any ! with 0<i<6 i and i are coprime with F,

a,b,

So =0

since & and %' are coprime, then, for 1Si<5 there exist

[al‘Fi +b ﬁij(aze +b, 12’2)(”31?3 +b, éj[aaFa +b, é)(”st +b; é) =1

such that

,which implies that
aFa,Fya;Fya FiasFs + b F a,Fra.Fa,FiasFs +aFb, F, aFia, Fiagks _
+aFa,Fya,Fa,FyasFs + b F a,FyayFia, FasFs + a Fb, Fy ayFya,FasF; Fy a,FiaF;

A

taFa,FaFb, FyaFs+aFa FaFaFibs Fs =1\ kinving both sides by ©e, we

obtain Fya\Fla, FyasFia Foasks = F .
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F = F+uF,+vF+uvF,+(u+vh, )F,+uF,+vF,

Let . Then

Fa Fa,Fa;Fa,Fa,Fy = (uFﬁ+vF6jalF]a2F2a3F3a4F4asF;
which implies that

u1§'6+v},7\'6 e(F)

FaFa,Fya,FraFasFs =u F+vEg parefore. :

Fal

Repeat the above progress, we have that Fot By v Eysuv Fy (u+vh, ) FouF+ v, € <F>

Thus, £= (F>

Self-dual cyclic codes over M2 (F2+uF2)

Let x=(x1,x2,...,x,,)1 J’Z(J’nJ’zv--’yn)eRn_ The Euclidean inner product of * and Y
is given by ¥V =X H Xyt XY 1o vectors X and Y in R are called orthogonal
if ¥ V=0 For alinear code R over R, its dual code C is the set of words over R that
are orthogonal to all code words of R, that is C= {x €R"|x-y=0,Vy EC}. A code C is
called self-orthogonal if C € and self-dual if C=C"

Let SO =agax+ra @ raxt o o polynomial of degree ¥, where % * 9 and

% is an unit of R . The reciprocal 1 (x) of £(%) is defined by
£0)=ax )

o Letc: <E>@<u 192>@<vé>®<uvﬁ;>®<(u+vha)ﬁ;>@<<u%‘6>+<v%;>>

be a cyclic code of odd length 7 over R where h, is an unit in F“[x]f<x _1>. Then

(el olo (o) 7]

and
CJ. _ 44degF0+2degF2 +2deg Fy+3deg Fy +2deg Fs +3deg Fy

Proof. Denote
c’ =<a*>@<uﬁ;*>@<vg*>@<uvﬁg>@<(u+vha)g*>@<<ua*>+<v >>

u’ Ffﬂ[}?jn] =0

=

For i/ 0=6,/<5 g i+1=6=j+1 12t 1=6=J we can see that

2 » *A ) - *A '
viENF | =0 2uvE | F, ., | =0
’ '1( o IJ , { o IJ jf iH1E6—j+1

x" -1 F:'+1(F:s*j+1

ie. *0=J then we have

F*

F;+1 6—j+1

A I 0
J. Therefore, [ ] . Thus, C QCL. From Theorem 1,

EUROPEAN JOURNAL OF SCIENTIFIC EXPLORATION



C|-|ct =4

C 44degFD+2dch H+2deg F3+3deg Fy+2deg Fs+3deg Fy

Since and

n=degF, +degF, +deg F;, +deg F, +degF +deg F; then
Ci _ 44degF0+2degF2+2degF3+3degF4+2deng+degF6

<E;>: ,<MF;>=42degF2,<VF;> — , <HV_F:>=
Note that t
<uVF;> ) ’ <(u + Vha )F;*> ) 42degF5 ’ <<u F:;> + <v‘F‘; >>| ) 4dch4

. Therefore,

*| 44degFD+2degF2+2degF3+3degF4+2degF5+degF(, _ |CJ_|

4deg F; 2deg F; deg Fy
4 0 4 3 4 6 ,

4degF(,

which implies that C"=C"
Corollary 1. Let C be a cyclic code of odd length ” over R and

N A N N N N A
F'=F +uF,+vE +uw F+(u+vh))F, +uF,+vF,

Fylx|/{x" -1 C=(F"

where “is an unit in 4[x] <x >.Then < >

Proof. The result follows from Theorem 2 and Theorem 3.

We now give a condition for a cyclic code to be self-dual. From Theorem 2 and

Corollary 1, we can see that a cyclic code € is self-dual if and only if 7 =F", which implies
that

A A A A A A A A A A

*
*
*
*
*

Since /7 and £ F F F . So the following result is proved.

Theorem 4. Let C be a cyclic code of odd length # over R . Then if

C:<}?;>Ga<uF2>®<vF3>@<“VRI>@<(”+vh“)é>@<<uﬂ>+<vﬂ>>,

Wherehﬂ is an unitin E‘[x]/(x - > . Then C is self-dual if and only if F= F

Fzze*,F;:F3*’F4:F:s*,F;=F;*_

C:<ﬁ{>@<u};2>®<vﬁ;>®<uvﬁ’4>(-B<(u+vha)ﬁ‘5>@<<u%’6>+<v};;>>

Proof. Let , Where

h . .. .F;[X]If(x"—].> € O C_CL

«is an unit in . if & is self-dual, then ¢ =¢ | Therefore, by Theorem 3, we

have that

(ol oo ) )-{e

< > < >(—B<uv > <u+vha)ﬁ5>@<<ué>+<vé>> . .
e fi=h B=F

F,= =F F

1:3 4 9 5 F;

2
&
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Inversely, if 1= %o B=F F=F F=F Fo=F ihen
C=<I/}1>(—I—)<u]%)C—B<vé>@<uv}%>®<(u+vha)}i>®<<u;76>+<v%6>>=<Fﬂ*>(-B
<uF;>®<VF;*>®<qu;>®<(u+vha)ﬂ*>®<<uﬂ*>+<vﬂ*>>=C'L

. Hence, C is a self-

dual code.
In the following, we give some examples to illustrate the main results in this paper.

In these examples, some self-dual codes over Fy

codes over R and the Gray map.

are constructed by self-dual cyclic

3 1 2
Example 1. Consider the factorization * 1= (x+1)x+ wh +w?) over i, Let

flz(x'H), fzz(x.pw) and fB:(x"'wz)_Then fizfi*’ fo=15 and f3=f;

The cyclic codes (S fastfof5) and <ﬁ’f3’tf2f3>, where € {"’”}, of length 3 over R

F,

are self-dual codes and their Gray images are self-dual codes over” +with parameters

12, 6, 4].
| Ex]ample 2. Consider the factorization * ~! = (e e + o+ 1o +W2x+1)over F,
Let /i =(x+1), fo= (e 1) and /5 =(x2+w2x+1). Then /i=/", J2=/5 ang /s=/2
(s Soslofs) gng (s Jsthf5)
self-dual codes and their Gray images are self-dual codes over
10, 6].

Example 3. Consider the factorization ¥ =1= (=) e 1o+ 7 +l)over Fi Let
fi=lee1) =) gng £=00 5 ) pron fi=£7 L= and L= The

te {v,u}

, Where , of length 5 over R are

Fy with parameters [20,

.The cyclic codes

cyclic codes (i Sosthof) and <f1’f3’tf2f3>, where Ie{v’”}, of length 7 over R are self-
diJaI codes and their Gray images are self-dual codes over Fawith parameters [28, 14,
6].
In Table 1, some more self-dual codes over Fi are constructed.
Table 1. Self-dual codes over £
Codes Factorization of X" —1 Reciproc_al Self-dual cyclic Qray
length n polynomials codes images
9 fi=x+1 fi=x+w L= =1 (fifofoufofs S fs) | [36,18,9]
f3=x+w2,f4=x3+w L= fa=1
’ 3 5 fi=1
fo=x+w
11 A :x+1, fi =f1*, b :f;’ <f1,f2,uf2f3> [44,22,11]
fr=x"+wxt +x7 +x° fi=1
+wix+1 ’
fo=x"+wx+x7 +x°
+wx+1
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13 fi=x+1 fi=f L=t | U fofofy) [52,26,12]
fo=x+wx’ +w'x’ fi=fy
+wx +1

2
fo=x +wx +wx’

+wix+1

17 fi=x+l, L= fi=f [ {Affufifififs) | 168:34,16]
fo=xt 47 +wx’ fLi=f fi=1
+x+1 ’ 1. =f5*’ ’

4 3 2.2
fi=x"+x +wx

+x+1

fi=x"+wx’ +x?

+wx+1

4 2.3 2
fi=x"+wx +x

Fwix+1

Conclusion
In this paper, we study some structural properties of self-dual cyclic codes over the
matrix ring Mz (F2+UF2). The ring Mz (F2+uF2) is isomorphic to £ = b +vE; +uvE,
F,

. We also

give a Gray map from this ring to
obtained.

. By the Gary map, some self-dual codes over F4 are

References

Alahmadi, A., Sboui, H., Sol’e, P., Yemen, O. (2013). Cyclic codes over Mz(Fz),
J. Frankl. Inst., 350(9), 2837-2847.

Bachoc, C.: Applications of coding theory to the construction of modular lattices, J.
Combinatorial Theory A 78(1), 92—-119 (1997)

Bhowmick, S., Bagchi, S., Bandi, R.K. (2018). Self-dual cyclic codes over Mz(z4),
arXiv:1807.04913

Hammons, A., Kumar, P., Calderbank, A., Sloane, N.J.A., Sol’e, P. (1994). The Zy—
linearity of kerdock, preparata, goethals, and related codes. IEEE Trans. Inf. Theory, 40,
301-319.

Luo, R., Parampalli, U. (2018). Cyclic codes over
10, 1109- 1117 (2018)

Mathematics  Subject  Classification  (2000). 94B15. Available at:
http://www.mat.ucm.es/~arrondo/classification-AMS.pdf

Oggier, F., Sol'e, P., Belfiore, J.-C. (2012). Codes over matrix rings for space-time
coded modulations, IEEE Trans. Inf. Theory, 58, 734-746.

Pal, J., Bhowmick, S., Satya, B. (2019). Cyclic codes over M4(F2). J. Appl. Math.
Computing. Available at: https://doi.org/10.1007/s12190-018-01235-w

M,(Fy +uF,) Cryptogr. Commun,

EUROPEAN JOURNAL OF SCIENTIFIC EXPLORATION


http://www.mat.ucm.es/~arrondo/classification-AMS.pdf
https://doi.org/10.1007/s12190-018-01235-w

