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Abstract. This study provides an overview of the performance of the state-of-the-

art global climate models of Coupled Model Intercomparison Project Phase 5 (CMIP5) in 
representing the present climate precipitation over Pakistan against the reanalysis 
dataset AgMERRA. The analysis have been done over the time period 1980-2010. The 
overall performance of the models are summarized by a heat map diagram based on 
RMSE’s w.r.t observed dataset. The results show that ENSMEAN and ENSMEDIAN 
models outperform individual models in all months. EC-Earth show better performance 
for winter months and GFDL-ESM-2M, GFDL-ESM-2G, GFDL-CM3 for summer along 
with MRI-CGCM3 for all months. A seasonality index has also been calculated for 
comparing the representation of seasonal cycle with the reanalysis dataset. MIROC5 and 
EC-Earth has relatively better performance over Pakistan. Box and whisker analysis show 
that for winter (JFM) months CMIP5 has relatively better performance as compared to the 
reanalysis dataset while there is difference of up to 1.5mm/day for the rest of the months. 
There is large variability between the models for summer months (JJAS). 

Key words: CMIP5, AgMERRA, RMSE, Seasonality Index, ENSMEAN, 

ENSMEDIAN. 
 
Introduction 
The Coupled Models Inter-comparison Project Phase 5 (CMIP5) provides an 

ultimate tool especially for researchers in developing countries to access the state of the 
art new generation Global Circulation Models (GCM) with much finer resolution than the 
previous generation of models (CMIP3) (Meehl, 2007; Taylor et al., 2012: 485). The 
evaluation of these models is of ultimate importance for global as well as regional studies 
based on climate change impacts since downscaling of the whole set of GCMs for such 
studies requires intensive computational and human resources. The climate model 
simulations are subject to uncertainties introduced through the model parameterizations, 
input parameters as well as the structure of the model (Knutti et al., 2010: 2739; IPCC 
AR5, 2013; Rupp et al., 2013: 884; Mc Sweeny et al., 2014). Precipitation and 
temperature are the key controls of the hydrological cycle.  

Therefore, quantification of uncertainties and biases in GCM simulations of these 
two meteorological parameters are necessary for understanding the application of these 
simulations in hydrology as well as in climate change impact studies (Giorgi and Mearns, 
2002: 1141; Gleckler et al., 2008; Gelaro et al., 2017: 5419).  

The main contribution to the uncertainty of the model comes from our limited 
understanding of the processes taking place. These parametric errors, also caused by 
small-scale processes or missing processes in the models, are transformed into large-
scale effects. As climate change has become more evident in recent decades, which is 
mainly caused by human activities, it has become a challenge for policymakers regarding 
adaptation and mitigation of future climate change and its impacts (Knutti et al., 2010: 
2739). The model that fails to simulate the past climate correctly will also lose its credibility 
for the future projections as well (Rupp et al., 2013: 884; Ahmed et al., 2019: 4803; Flato 
et al., 2014: 741).  

The main goal of this paper is to evaluate model performance for those who use 
their outputs for impact based studies involving downscaling of GCM data using several 
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techniques and use as input for hydrological or crop modelling etc. Three sources of 
uncertainties have been discussed by (Hawkins and Sutton 2009: 1095; 2012) which are 
addressed in CMIP5 GCMs.  

The first is uncertainty in global greenhouse gases forcing which is addressed by 
use of Representative Concentration Pathways (RCPs), response to this forcing 
depending on the model parameterizations by making available larger set of GCMs and 
internal variability coped by providing multiple ensemble members having different initial 
conditions (Li et al., 2016: 4253). As the different GCMs can simulate different changes 
at regional level with the same anthropogenic forcing, it is difficult to identify the most 
reliable GCM. Therefore, it is important to assess ensemble of GCMs based on their 
collective information of the regional spatial structure of climate change signal in sign and 
magnitude (Giorgi and Francisco, 2000: 1295; Giorgi et al., 2001).  

The two quantitative reliability criteria (e.g Giorgi et al., 2001; Khan and Koch, 2018; 
McSweeney et al., 2015: 3237) of the regional climate change simulations asses the 
ability of GCMs to reproduce the present day climate referred as model performance (the 
closer the model’s climate to observations, the more reliable it’s climate simulations will 
be) and the convergence of multimodel simulations for a given anthropogenic forcing, 
referred as model convergence (the higher convergence, the more robust is the signals) 
(Giorgi and Linda, 2002; Meher et al., 2017: 7778; Ta et al., 2018: 1516). Cheng and 
Frauenfeld (2014a: 5767; 2014b: 3935) had suggested that the spatial pattern of annual 
temperatures in CMIP5 models show good agreement with the observed data, however, 
disagreement exists in the magnitude of maxima.  

In this study we will be focusing on the model performance metrics in simulating the 
present climate over the domain of Pakistan. Several Studies based on GCM evaluation 
and their application in hydrological modelling have been done over the HKH (Hindukush-
Karakoram-Himalaya) region as well on the Indus basin. Lutz et al. (2016: 3988) studied 
the basins of Indus, Ganges and Brahmaputra using skill based GCM selection criteria 
suggest disadvantage of the two contrasting techniques in envelop based approach of 
GCM evaluation i.e considering only annual means changes or high skill in simulating the 
past or present climate could lead to different set of multimodel ensembles for climate 
change projections. 

Meher et al. (2017: 7778) analyzed CMIP3 and CMIP5 multimodel ensemble over 
the Western Himalayan Region. The sensitivity analysis showed that MIROC3.2 and 
MIROC5 outperformed in both CMIP3 and CMIP5 multimodel ensembles. Their study 
also showed that most of the models in both multimodel ensembles failed to reproduce 
the realistic pattern and magnitude of rainfall over the domain which is mainly dependent 
on inaccurate representation of topography in this region (Boos and Hurley, 2013: 2279). 
However, CMIP5 models as compared to the CMIP3 models were better in representing 
the rainfall patterns (Sperber et al., 2013). 

Precipitation analysis similar relative root mean square error of CMIP5 multimode 
ensemble over the Central Asian domain revealed large variability among these models 
however, the top six models identified where HadCM3, MIROC5, MPI-ESM-LR, MPI-
ESM-P, CMCC-CM and CMCC-CMS. The study also recommended the multimodel 
ensemble over the individual models. Wu et al., (2017: 176) also analyzed CMIP5 
multimode ensemble over the HKH region for baseline (1976-2005) as well as for the 
future scenarios. The multimodel ensemble mean performed better than individual 
models with negative RMSErs over the study domain.  
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Data and Methodology 
 

 
Fig. 1. Domain of Study, shaded is elevation in meters 

 
The study region is 60.125E to 84.125E, 22.875N to 38.625N including the whole 

Indus Basin. The region is therefore, selected in order to use it for the impact based 
studies. Monthly precipitation data was obtained for 36 CMIP5 models from Earth System 
Grid (ESG) data portal. The data was downloaded for only first ensemble members of the 
historical runs at monthly frequency (Taylor et al., 2012). The reanalysis dataset used 
was daily product created for Agricultural Model Intercomparison and Improvement 
Project (AgMIP) in order to provide daily time series of climate variables required for 
agriculture models at global domain for the time period of 1980-2010. This dataset is 
produced by combining state-of-the-art reanalyses (NASA's Modern-Era Retrospective 
analysis for Research and Applications, MERRA, (Rienecker et al., 2011) from in situ 
observations and satellite data. The analysis were done both on monthly and seasonal 
basis. GCM data was interpolated at the same resolution as of the reanalysis dataset i.e 
0.25º x 0.25º using the bilinear interpolation. Spatial as well as temporal averaging is 
applied in order get overall performance of the models. Seasonality index is defined in 
order to check the model performance in reproducing the seasonal cycle of precipitation. 
Two additional models, mean model and median model are also evaluated.  

The performance metrics include Root Mean Square Error (RMSE) using 
climatologies of both observation and model over the domain of study (60.125E to 
84.125E, 22.875N to 38.625N) as: 

 

𝑅𝑀𝑆𝐸 = √[(𝑥 − 𝑦)2] 
 

Where 𝑥 is the model climatology and 𝑦 is the observed/reanalysis climatology. The 
square brackets represent averaging over domain of study. RMSEr is used for assessing 
individual model performance with respect to other models given by:  

 

𝑅𝑀𝑆𝐸𝑟 =
𝑅𝑀𝑆𝐸 − 𝑅𝑀𝑆𝐸𝑚

𝑅𝑀𝑆𝐸𝑚
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Where RMSEr is the RMSE representing the relative model error. 𝑅𝑀𝑆𝐸𝑚 is the 
median of all RMSE for all models (Glecker et al., 2008). The analysis have been done 
for both seasonal and annual time scales as well as for each month of the year. The 
values of RMSEr below zero shows that particular model performs better than the rest of 
the models whereas the models having RMSErs above zero shows that particular model 
performs worse than the rest of 50% of the models. The values of RMSEr are unitless. 
The models have been averaged both spatially and temporaly to see the overall behavior 
of models.  

The seasonality index have been defined based on the methodology of William B 
Bull (2009: 126). The precipitation seasonality index (SIp) has been defined as ratio of the 
average precipitation for the three wettest consective months (Prw) divided by the average 
total precipitation for three consecutive driest months (Prd).  

 

SIp =
Prw
Prd

 

 
Results and Discussion 
Starting with relative root mean square error analysis on monthly climatology of 

multimodel ensemble precipitation. Most of the models show large variation in 
reproducing the precipitation (figure 1). Especially in the months of April, May, June and 
the peak monsoon season July, August, September. The models performing worse than 
rest of 50% models in the transition months of April, May, June, are ACCESS1-0, 
ACCESS1-3, HADGEM2-AO, HADGEM2-ES, INMCM4, MIROC-ESM-CHEM, 
HADGEM2-CC (AMJ) whereas EC-EARTH has worse performance in the month of June. 
For the months of July, August, September (JAS), the worst performing models are 
(RMSEr ≥ 0.5), IPSL-CM5B-LR, CSIRO-MK3-6-0, MRI-CGCM3, GISS-E2-H-p1, GISS-
E2-R-p1. The winter transition period of October, November, December (OND), the 
models ACCESS1-0, BCC-CSM1-1, BNU-ESM, IPSL-CM5B-LR, MIROC-ESM, MIROC-
ESM-CHEM, FIO-ESM, GISS-E2-R-p1 perform worse than the rest of the models 
whereas in the peak winter months of January and February, BNU-ESM and FIO-ESM 
has worse performance. Most of these models have RMSEr ≥ 0.5 in the months of 
transition period (OND, AMJ) and winter i.e performing worse than all other models 
presented in this study, while few have RMSEs lying within the range of 0.2 to 0.4.   

The models performing better than the rest of the 50% in the winter transition period 
(OND) include CANESM2, IPSL-CM5A-MR, CESM1-CAM5, MIROC5, CSIRO-MK3-6-0, 
EC-EARTH, ENSMEAN and ENSMEDIAN. In the winter months (JFM) EC-EARTH, 
ENSMEAN and ENSMEDIAN perform better than the rest of 70% of the models. Whereas 
CANESM2, CESM-BCC, MPI-ESM-LR show smaller RMSEr in the summer transition 
period (AMJ) with IPSL-CM5A-LR, IPSL-CM5A-MR, EC-EARTH and CESM1-CAM5 
having smallest RMSEr in the April and May months. Among these models, most perform 
well in OND months with CSIRO-Mk-3-6-0 and EC-Earth representing the lowest RMSEs 
(smaller than -0.5) hence better than all other models. The rest of the models have 
average behavior in winter months with RMSEr ranging between (-0.3 to -0.2) and EC-
Earth showing lowest RMSE (≤ -0.5) along with ENSMEDIAN (RMSEr of -0.3 to -0.4). 
This implies most of the models perform well than the rest of 60-70% of the models in 
these seasons. Considering the summer monsoon months, JAS, most of the models have 
below 50% performance. However, the good models lie above the range of 50-60% 
(RMSEr ranging between 0 to -0.2) of the models with only GFDL-ESM2G having the 
lowest RMSEr i.e between -0.3 to -0.4.  



 European Journal of Scientific Exploration 

 

EUROPEAN JOURNAL OF SCIENTIFIC EXPLORATION 5 

 

From figure 2, at annual time scale, the models having highest RMSEr than the rest 
of the 50% models are MIROC-ESM, GISS-E2-H-p1 (RMSEr ≥ 0.4 to 0.5). At seasonal 
timescale, discussing the winter season first (DJFM). Most of the models have RMSEr 
ranging greater than 0.3 to 0.4 i.e performing worse than the rest of 70-80% models. 
These models include, BNU-ESM, FIO-ESM, and IPSL-CM5B-LR for DJFM and JF and 
IPSL-CM5B-LR, MRI-CGCM3, GISS-E2-H-p1, GISS-E2-R-p1 and CSIRO-Mk-3-6-0 for 
JJAS and JA.  

The lowest RMSEr for annual timescale range from -0.4 to -0.3 for the models 
GFDL-CM3, GFDL-ESM2G. Whereas for DJFM, MRI-CGCM3, GFDL-CM3, GFDL-
ESM2G, and GFDL-ESM-2M has RMSEr between -0.4 to -0.3 with model having lowest 
RMSE is EC-Earth. For the peak winter season JF, the ENSMEDIAN has RMSE less 
than -0.4 to -0.3 with EC-Earth again having the lowest RMSEr. For summer monsoon 
months JJAS and peak monsoon months JA, only three models show lowest RMSEr (-
0.4 to -0.5 for JJAS and -0.3 to -0.4 for JA) which are GFDL-CM3, GFDL-ESM2G, and 
GFDL-ESM-2M.  

 

Fig. 2. Monthly precipitation climatology Relative RMSE's of CMIP5 multimodel 
ensemble (1980-2005). X-axis represent CMIP5 models and shading represent Relative 

RMSE's  
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Fig. 3. The same as Fig. 2, but for Annual and seasonal Precipitation 

 

Fig. 4. RMSEr of precipitation seasonality index (1980-2005) calculated from CMIP5 
multimodel ensemble  



 European Journal of Scientific Exploration 

 

EUROPEAN JOURNAL OF SCIENTIFIC EXPLORATION 7 

 

Fig. 4 show RMSEr of the seasonality index. This index is helpful in assessing that 
how well the seasonal cycle is represented in the models as compared to the observation 
for the area under study. The RMSEr of precipitation seasonality index (blue line) show 
18 out of 38 models fall in the region of below zero RMSEr with MIROC5 and EC-Earth 
models showing lowest values (≤0.3). 16 out of 38 show above zero RMSE values. The 
models having larger RMSEr are CSIRO-Mk-3-6-0 and MRI-CGCM3 (>0.2). The 
ENSMEAN and ENSMEDIAN lie about zero RMSEr line indicating neither good nor bad 
in representing the seasonal cycle. As depicted in the figure, there is large variability 
between the models in representing the seasonality of precipitation. This particularly 
depends on the parameterization schemes in the models to represent the precipitation 
process. Since this region is influenced both by convective systems (Monsoonal systems) 
and large scales systems (western disturbances) as well as interaction of both, it 
becomes the source of uncertainty in the models.  

 

 
Fig. 5. Box and whisker plot of precipitation and seasonality indices for the CMIP5 
multimodel ensemble. Blue asterisks represent AgMERRA dataset whereas boxes 

represent CMIP5 multimodel ensemble 
 

Fig. 5 shows analysis for precipitation climatology and seasonality index. There is 
large variability in the CMIP5 multimodel ensemble shown in the months of June, July, 
August and September as well as for the seasonality index. There are few outlier models 
which are represented in the upper quartile. The median values of CMIP5 models 
coincide with those of AgMERRA for the months of January, February, March and June 
however, there is large difference between the model ensemble and the observations in 
the rest of the months (up to 1.5 mm/day). The seasonality index also show large variation 
between the models and the observed dataset. AgMERRA shows up to 3mm/day higher 
value in the seasonality index as compared to the CMIP5 multimodel ensemble median. 
The large variation could be result of models which are unable to simulate the annual 
seasonal cycle correctly.  

 
Conclusion 
The CMIP5 multimodel ensemble has been analyzed in comparison to observed 

dataset AgMERRA for the period 1981-2005. The analysis have been done at monthly 
time scales for the precipitation. Spatial and time averaging has been applied to assess 
the overall performance of the models. A seasonality index is also defined for 
precipitation. In addition to CMIP5 multimodel ensemble, we have also used ensmean 
and ensmedian models. ENSMEAN, ENSMEDIAN models outperform other individual 
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models for all variables consistent with most of the performance metrics studies on CMIP5 
models. For winters, EC-Earth show better performance for precipitation, and for summer 
months GFDL-CM3, GFDL-ESM2G and GFDL-ESM2M show smaller RMSEr over the 
domain. There is large variability in CMIP5 models in simulating the precipitation. For 
peak monsoon months July, August and September, MRI-CGCM3, GFDL-ESM-2M, 
GFDL-ESM2G and GFDL-CM3 show better results than the rest of the ensemble. For 
precipitation seasonality index MIROC5 and EC-Earth show better results over the 
selected domain. The boxplots are also included in the analysis for the overall 
performance of CMIP5 ensemble. The results of analysis are consistent with the results 
of studies based on upper Indus basin, and full domain of Pakistan (Najeeb Ullah Khan 
et al., 2018: 1793; Kamal Ahmend et al, 2019, Asim Jehangir Khan et al. 2018: 1793; 
Nadia Rehman et al., 2018: 381-415; etc). Precipitation is under estimated in the 
ensemble especially in JJAS months with large variability between the models. The 
precipitation seasonal cycle is under estimated in the CMIP5 ensemble. For winter 
months (JFM), the models perform relatively better.  
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