A Deterministic k-means Initialization Method

O. Kettani F. Ramdani

Scientific Institute Mohammed V University in Rabat, Morocco

Abstract. The most prominent clustering algorithm k-means has a major drawback: it's sensitivity to the initial clustering centers. To overcome this problem, we propose to initialize k-means by using the Agglomerative Clustering Method (ACM) introduced by the authors in a previous work. The complexity of the proposed approach is O(nk), where n is the number of objects in the input dataset and k the number of clusters. We evaluated its performance by applying on various benchmark datasets and comparing with the related Katsavounidis, Kuo and Zhang (KKZ) O(nk) algorithm. Experimental results have demonstrated that the proposed approach produces more consistent clustering results in term of average Silhouette index.

Key words: k-means, clustering, KKZ, initialization.

Introduction

Cluster analysis is the most widely used technique in Data Mining. Clustering consists of grouping a given dataset into a predefined number of disjoint sets, called clusters, so that the elements in the same cluster are more similar to each other and more different from the elements in the other cluster. This optimization problem is known to be NP-hard, even when the clustering process deals with only two clusters (Aloise et al. 2009: 245-249). Therefore, many heuristics have been proposed, in order to find near optimal clustering solution in reasonable computational time. The most prominent clustering method k-means is a greedy algorithm which has two stages: Initialization, in which we set the seed set of centroids, and an iterative stage, called Lloyd's algorithm (Lloyd, 1982: 129-137). Additionally, Lloyd's algorithm has two steps: The assignment step, in which each object is assigned to its closest centroid, and the centroid's update step. The time required for the assignment step is O(nkd), while the centroid's update step and the computation of the error function is O(nd). The main advantage of k-means is its fast convergence to a local minimum. A major drawback of k-means is its sensitivity to the initial clustering centers (namely, seed). To achieve a better initialization, many techniques have been proposed. In this study, yet another k-means initialization technique is proposed. It is based on the Agglomerative Clustering Method (ACM) introduced by Kettani et al. (2014: 1-7).

Related Works

Several initialization methods have been proposed in the literatures (MacQueen, 1967: 281-297; Katsavounidis et al., 1994: 144-146). Katsavounidis et al. (1994: 144-146) utilize the sorted pairwise distances for initialization which has been termed as the KKZ algorithm. This algorithm chooses the vector with maximal norm as the first seed, then For j = 2, ..., k, each centroid m_j is set in the following way: For any remaining data x_i , its distance d_i to the existing centroids is computed. d_i is calculated as the distance between x_i to its closest existing centroid. Then, the point with the largest d_i is selected as m_j . The computational complexity of KKZ is O(nk).

Proposed Approach

European Journal of Scientific Exploration

The main idea of the proposed ACM method, is to choose k initial centroids as the k first points in X. Then, X is scanned once, the distance between each non assigned point X_i and the nearest centroid m_j is compared with the minimum of the inter-cluster distances stored in a kxk D matrix. If it is lower, then X_i is assigned to cluster C_j , else the two clusters with closest centroids are merged together into one cluster and a singleton cluster is created with centroid X_i , seeking to minimize the SSE criterion. Then centroids and D matrix are updated. This process is repeated until all points in X are assigned. More details are presented in the following pseudo-code (Table 1).

Input: A data set X whose cardinality is n and an integer k Output: k centroids mi
for i=1:k do $C_{i\leftarrow} \{X_i\}$ $m_{i\leftarrow} X_i$ end for $D_{\leftarrow}(d(m_i,m_j))_{1 \le i \ne j \le k}$ $m_{\leftarrow} Min(D) and (a,b)_{\leftarrow} Arg(Min(D))$
For i=k+1:n do $d_i \leftarrow Min(d(X_i, m_j))$ j j
$\begin{array}{c} c \leftarrow \operatorname{Arg}(\operatorname{Min} d(X_i, m_j)) \\ j \\ \text{if } d_i < mu \text{ then} \\ C_c \leftarrow C_c \cup \{X_i\} \\ m_c \leftarrow (C_c m_c + X_i)/(C_c + 1) \\ \end{array}$
$D(c,.) \leftarrow (d(\Pi_c,\Pi_j)) \ 1 \le j \le k$ $D(:,c) \leftarrow D(c,:)'$ else $C_a \leftarrow C_a \cup C_b$ $m \leftarrow (C \mid m) \land (C \mid n \mid C \mid k \mid L \mid L$
$C_{b\leftarrow} \{X_i\}$ $m_b \leftarrow X_i$ $D(a,:) \leftarrow (d(m_a,m_j)) \ 1 \le j \le k$
$D(:,a) \leftarrow D(a,:)$ $D(b,:) \leftarrow (d(m_b,m_j)) \ 1 \le j \le k$ $D(:,b) \leftarrow D(b,:)'$ end if $m_{Min}(D) \ angle(a,b) \rightarrow Ang(Min(D))$
mu←Min(D) and (a,b)←Arg(Min(D)) h,j h,j end For
For i=1:k do Output mi end For

	Table 1.	Pseudo-code (of the Prop	osed Method
--	----------	---------------	-------------	-------------

Complexity

As shown in pseudo-code, at step 3, $O(k^2)$ operations are required to compute D matrix, and $O(k^2)$ space are required to store D matrix.

At step 4, the for loop is repeated n-k times, and updating D matrix, require only O(k) operations at each iteration. The overall running time complexity of ACM is O(nk) which corresponds to the complexity of KKZ method.

Results

Algorithm validation is conducted using different data sets from the UCI Machine Learning Repository (Asuncion. and Newman, 2007). We evaluated its performance by applying on several benchmark datasets and compare with KKZ_ k-means. In preprocessing step, the data were normalized.

Silhouette index which measures the cohesion based on the distance between all the points in the same cluster and the separation based on the nearest neighbor distance, was used in these experiments in order to evaluate clustering accuracy.

The silhouette width silh(i) ranges from -1 to 1. If an observation has a value close to 1, then the data point is closer to its own cluster than a neighboring one. If it has a silhouette width close to -1, then it is not very well clustered. Kaufman and Rousseeuw (2005) use the average silhouette width to estimate the number of clusters in a data set by using the partition with two or more clusters that yields the largest average silhouette width.

ACM_k-means was compared with a related deterministic clustering method: KKZ_k-means (k-means initialized by KKZ).

Experimental results are reported in Table 2 and Fig. 1.

Data set	k	KKZ_k-means	ACM_k-means				
Iris	3	0.7525	0.8139				
Ruspini	4	0.9097	0.9107				
Aggregation	7	0.6719	0.7874				
Compound	6	0.6516	0.7685				
Pathbased	3	0.7330	0.7274				
Spiral	3	0.5280	0.5218				
D31	31	0.6204	0.9182				
R15	15	0.5966	0.9355				
Jain	2	0.6723	0.9080				
Flame	2	0.5329	0.8756				
Dim32	16	0.7470	0.9961				
Dim64	16	0.9985	0.9984				
Dim128	16	0.9991	0.9991				
Dim256	16	0.9996	0.9996				
Dim512	16	0.9998	0.9998				
dim2	9	0.7816	0.9179				
dim3	9	0.3966	0.9495				
dim4	9	0.5849	0.9749				
dim5	9	0.4490	0.9273				
dim6	9	0.6308	0.9557				

Table 2. Experimental results of KKZ_k-means and ACM_k-means application on different datasets in term of average Silhouette value

European Journal of Scientific Exploration

dim7	9	0.5652	0.9553
dim8	9	0.4604	0.9184
dim9	9	0.3778	0.9941
dim10	9	0.3729	0.9937
dim11	9	0.5092	0.9943
dim12	9	0.4329	0.9924
dim13	9	0.6241	0.9920
dim14	9	0.6909	0.9922
dim15	9	0.7210	0.9087
a1	20	0.5527	0.9905
a2	35	0.5907	0.7421
a3	50	0.5889	0.7703
s1	15	0.7333	0.8805
s2	15	0.6127	0.8009
s3	15	0.6225	0.6481
s4	15	0.6019	0.6075

Fig. 1. Chart of average Silhouette index for KKZ_k-means and ACM_k-means applied on different datasets

Conclusion

In this study, an initialization method for the k-means algorithm was suggested. Its time complexity is 0(nk) like the KKZ seed algorithm. However, experimental results have demonstrated that the proposed approach produces more consistent clustering results in term of average Silhouette index.

References

Aloise, D., Deshpande, A., Hansen, P., Popat, P. (2009). NP-hardness of Euclidean sum-of-squares clustering. Machine Learning, 75, 245-249. https://doi.org/10.1007/s10994-009-5103-0

Asuncion, A., Newman, D.J. (2007). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. Available at: <u>http://www.ics.uci.edu/~mlearn/MLRepository.html</u>

Katsavounidis, I., Jay Kuo, C. C., Zhang, Z. (1994). A new initialization technique for generalized lloyd iteration. IEEE Signal Processing Letters, 1, 144-146. https://doi.org/10.1109/97.329844

Kaufman, L., Rousseeuw, P. (2005). Finding groups in data: an introduction to cluster analysis. Wiley.

Kettani, O., Ramdani, F., Tadili, B. (2014). An Agglomerative Clustering Method for Large Data Sets. International Journal of Computer Applications, 92(14), 1-7. https://doi.org/10.1002/9780470316801

Lloyd, S.P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129-137. <u>https://doi.org/10.1109/TIT.1982.1056489</u>

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, Vol. 1: Statistics, pp. 281-297. Available at: <u>https://projecteuclid.org/euclid.bsmsp/1200512992</u>